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We study the plane contact static problems of an elastic wedge under the condi- 
tion that it is rigidly connected with the stamp. The question of solvability of the 

above problems is investigated and an approximate method of solution involving 

the matrix factorization method developed in paper [1] and others, is proposed. 
The plane problems of elasticity for a wedge with discontinuous boundary con- 
ditions were investigated by a number of authors. For example, in [2] the author 
used the method of reduction to an integral Wiener-Hopf equation to investigate 
the problem of indenting a rigid stamp into a perfectly smooth face of an elastic 
wedge. In [3] a similar problem was reduced to a certain Fredholm equation of 
second kind. In [43 and others (+) , the asymptotic and orthogonal polynomial 

methods were successfully used. 

1. We shall consider an elastic wedge, the upper face of which is acted t$ron by a strip 
stamp rigidly adhering to the face. The boundaries of the zone of contact are separated 
from the edge of the wedge by the distances a* and b* , respectively (b* > a* > 0) , 
and we study the case of plane deformation. For a displacement vector u”(r)={uro(r), 
lb0 (r)} defined in th e region cp ~7 a, a* < r ( b* , we require to find the total 
stress vector (JO (r) = {r+50ro (r),oqo@)} in the zone of contact for each of the following 
conditions of clamping of the lower edge of the wedge (rp = 0, 0 < r ( CXJ): 

A u, (I, 0) = u, (r, 0) = 0 

B z,,(r, 0) = u, (r, 0) == 0 

*) Lutchenko, S. A. and Popov, G. Ia. On certain plane contact problems of the theory 
of elasticity for a wedge. In colL : 3-rd All-Union Convention on Theoretical and 
Applied Mechanics. Moscow, 1968. Annot. dokl. , Moscow,“Nauka”, 1968. 



624 

c z,,(r, 0) = uy (r, 0) z= 0 

Here T and rp are the polar coordinates in any cross section of the wedge perpendicular 
to the edge. We also assume that all stresses and displacements vanish as r --f 00 on 
any ray cp = COnSt. 

We shall utilize the general solution of the plane theory of elasticity in the form of 

Papkovich-Neuber, as given in [5j. Satisfying the boundary conditions (1. l), we arrive 
at a system of integral equations for the unknown vector of contact stresses U’ (r) which 

can be written in the matrix form as 

Ls = \k (5) S@‘)&” - t(P), aqP<b (1.2) 

Q 
--m +ic 

k (t) = -& \ K (z) t--d,, r=hp, h=b*--ua*, e>O 
--m +ic 

(G is the shear modulus of the wedge material), In each of these cases A, B and C of 
the boundary conditions at the lower edge of the wedge the expressions for the elements 
of the matrix K (z), are determined by the following respective relations: 

A A(z)K,,(z)= c(“++q) 
sin 21 

A (z) Kzz(z) = C (SC + - 7) 

A(z)~IZjZ)=+(B~+~) +ic+ 

B A((z)K,,(z) =C (F-t T) 
sin 2% 

A (z) Kzz(z) ==, C (+ - T) 

CA (z) K,, (z) = C (ch z -:- cos Za) 

A (z) K,, (z) --= C (ch z - cos 2a) 

sin 2% i?(z)K12(z)==z(B+- 2% ) 
j-. iC sin 2a 

A tzj _ z2 (F + +) , f&(z) - KIS (2) 

(1.3) 
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B =I -22v, c = 2 (1 - Y) 

where a bar superscript denotes the complex conjugate and v is the Poisson’s ratio. It 

can easily by shown that the asymptotic expressions for the function Kij (r;) as i z 1 --t 

00 , are given by 
Kii (z) = C I zj -’ [l + 0 (z” ch-l z)l (1.4 

Kij (z) = B 1 ~1 -’ sgn z [I -t 0 (z” ch-’ z)] 

Lemma 1. The following asymptotic estimates hold : 

ki+ (p I’ p’) = Cl In ‘G [Z -t o (~)l. kfj (p il 0’) z 0 (1) (1.5) 

‘G = 1 In (pip’) 1 -to 

(Izij are the elements of the matrix k (t)) . 

2, Let us investigate the question of solvability of the system (1.2). To do this, we 
consider the set of vector functions s (0) for which the following functional exists: 

m 

E (s) = & 1 (G(Z)-K(z)-s*(z))dz<oa (2.1) 
--m 

b 

S* (2) == s s (p) p-id+-& 

a 

The matrix K (2) has, for each of the problems A, B and C, a concrete form determined 

by the relations (1.3). When considering the problems B and C we shall require that 

the conditions 
s” (0) = 0 (2.2) 

are satisfied. 
Lemma 2. We have the inequality E (s) > 0 ; the equality is attained only 

when s (p) G 0. 
To prove this, we must reduce the functional (2.1) to the form 

OD 

(2.3) 

Then the obvious inequality 
m 

(2.4) 

Xl -- i %* (4 If x2 = I s2” (4 I 

and the positive definiteness of the quadratic form T (LZ+,_I~) provide the proof of the 
lemma. 

The above lemma enables us to introduce the space H (a. 6) of generalized solu- 
tions of the system (1.2) with the norm L \/ s //a’ = f*: (s) defined by the right-handside 
of the relation (2.3). 
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Lemma 3. The inequality 

m (2) j s* (2) 1 5; e (sl*, .s2*) < ill (2) Is* (2) 1 (2.5) 

0 < 332 (2) < M (2) < 13, m (Z), ilf (2) --= 0 (z-l) 

(where the explicit expressions for m and AZ are easily obtained), holds. The proof can 
be reduced to showing that the maximum and minimum of the form e (sI*, .s?*) both 
exist on the unit circle. 

Theorem 1. The integral equations of the problems A, B and C have unique 
generalized solutions in the space H (0, b) provided that 

5 / F (z) I2 n&-l (z) dz < cc, P (2) -- r fab (p) +-‘2a+ G.@ 
--Q) 

where f,, (pi is the continuation of f (p) from the segment a < p -=_I 0 to the whole 
of the semiaxis 0 < p < 00 ,carried out with the help of the left-hand side of (1.2). 

To prove the theorem we must introduce a Hilbert space of generalized solutions 
with the scalar product of the elements of H (n, 6) generating the norm (2.3), and use 
the Riesz theorem with inequality (2.5). 

We shall now establish that the class of uniqueness contains the class of summable 
functions. in addition to H (a, b) we introduce the spaces C (n, b) 
as well as p > 1 vector functions s (p) :- { sr (p), s, (p) } defined 

ric 

and L, (a, b), 
by the usual met- 

(2.7) 

Using arguments similar to those used in 161. we can establish the following theorems: 

Theorem 2. The operator I, in the relations (1.2) acts from I& (a, b) to C (a, 

6) continuously. 
Theorem 3. The imbedding 

is valid. 
Proof of the above theorems follows directly from the inequalities (2.5) and the Haus- 

dorff-Young inequality for the Fourier integrals. 
From the results of Theorems 2 and 3 follows 
Theorem 4. Equation (1. 2) cannot have more than one solution in the space 

L,(a, b), 1 < 1) G 2 

Note. Lemma 2 establishes the positive definiteness of the operator L appearing 

in the left-hand side of (1.2), and this in fact means the non-negativeness of the energy 
functional E (s) accumulated by the elastic medium during its deformation. The con- 
dition (2.2) ensures that the energy in the problems B and C is finite, and represents 
the condition of self-balancing of the loading at the upper face of the wedge. 

3, We continue our investigations by reducing Eq. (1.2) to an equivalent system of 
the Fredholm integral equations of second kind. We proceed from the relation 

~(z)s*(~)=~“(z)~ff,*(z)+~,“(z), -co<z<m (3.1) 
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which follows from (1.2). We denote by f,” (z) and f,,” (z) the Mellin transforms of 
the natural continuation of 1 (p) into the regions 0 < p < a and n < p << b , res- 
pectively. It can easily be established that the vector functions 

@+ (2) == f,,* f5) &rA*, Ff (z) _; CT’: iz) b--iz/~~ (3.2) 

are regular in the upper semiplane and vanish as Im z + +oo, while the vector func- 
tions 

‘P’- (2) = fb* (z) bvi*‘Bx, F‘(z) = f* (2) a-iz/w (3.3) 

are regular in the lower semiplane and vanish as Im z -+ -00. Then by virtue of(3.2) 

and (3.3) the relation (3. 1) can be written in the following two equivalent forms: 

K (z) S+ (z) = F+(z) + Qt+ (z) hinfia + Y-(z) (3.4) 

K (z) S- (z) = F- (z) + a,’ (z) + Y-(z) il-izb 
-OO<.Z<CQ, h=b/a>i 

In order to apply the factorization method to the relations (3.4), we must factorize 
the matrix-function K (z) relative to the real axis in the complex z-plane. From the 
asymptotic relations (1.4) it follows that when 1 z 1 + 00 , the matrix is close to a cer- 
tain ~ncti~al-commutative matrix [I] factorized in a finite form. 

Taking all this into account, we introduce the following functional-commutative mat- 
rix : 

Ku (4 iKlt (2) 
A(4 = _ I iKlz(z) KII (2) ’ - -<t<-J (3.5) 

On the basis of the theory of matrix functions [7] we can obtain the factorization formu- 
las in the form 

A (z) = A, ($4 (z), R, (4 R. (4 = K,, (4 + KI, f% (3.6) 

K, WC. (4 = K,I (4 - K,z (4 

A,(z) = 
I 

Rii (4 iR?i (4 

- iRz (z) Ii; (z) w 

R,“,(zJ = R+ (4 + Kk (4 

’ R&(z) = R*(z) - KLt (z) 

Lemma 4. The following estimates are valid [l]: 

R* (z) = C, (T iz)-‘r[l -+- o (z-l)], ztf: = l/% (1 j= in-’ In x) (3.7) 

K,(z) = C,(Fiz)-‘*[I +o(z-‘)], x=3--4~ 

The proof follows from the estimates (1.4) and relations (3.6). We can now represent 
the matrix K (z) in its two equivalent forms 

K(z) = A__(NUs)A+(s), K(s) = A+(z)~(+k(z) (3.9) 

Theorem 5. The elements of the matrix n (2) have the form 

&1(z) = 1 + + U&R& (&a - K,,) + R$R, (Klp - &)I 0-r (3.9) 

&n(z) = 1 + + [KPk (KB - Krr) + R&G (X1, - Rr,)] 0-l 

&? (z) = -+[R,aR&a - Ku) + R,Rk (Ku - El,)] 0-l 
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%I (4 = +- W,R$ (Km - l(n) + R,Ri (Kw 

8 = det K (z) 

and the following asymptotic properties : 

& (Z), rIz2 (2) = 1 .I- 0 (z%h-‘z) 

n,? (z), lT,, (z) -= 0 (z2ch-lz), 1 z ) 

R,,)] 0-l 

(3.10) 

00 

The proof of the theorem is based on indirect computation of the elements of the matrix 

II (z) and the application of the asymptotic estimates (3.7). Relations similar to (3.9) 
and (3.10) appear to be valid also for the matrix h (2). 

By virtue of the asymptotic estimates of the form (3. lo), the elements of the matrices 

n (z) and A (z) can be approximated with any degree of accuracy using the bilinear 
functions. The resulting matrices can then be factorized using the results [8] of factori- 
zation of the matrix-functions, yielding the representations of the form 

n (z) = U * lz)JI+* (z), A (z) SE AL* (z) A_* (z) (3.11) 

where n** (z) and .4 fX (z) are matrix functions with bilinear elements, regular in the 
regions lm z > 0 and lm z < 0 , respectively. Introducing the expressions (3.8) into 
(3.4) and performing the factorization relative to the real axis with (3. 11) taken into 
account, we arrive at the relations 

(U?(z) F+ (z))- + {VI’ (z) a+ (z) W/2”)- + UT’(z) ‘J’-(z) = 0, (3.12) 

U_(z) = A-WI’_* (z) 

(V;’ (z) F- (z))’ + {V;’ (z) Y-(z) h-i*/2a)+ + V;‘(z) Q+ (z) = 0, 

V, (z) y= A+ (z) A+* (z) 

Let us introduce the following notation: 

U?(z) v, (z) = C(z) (3.13) 

u-1 (z) y- (z) : - XL(Z), v;’ (4 a+ (4 = x2 (4 

By virtue of the relations (3. 12) and (3. 13) and the factorization theorems we arrive at 
the following system of integral equations of second kind, relative to the unknown vec- 

tors X, (2) and X, (z) (Im z < 0): 

where the contour r is situated in the half-plane Im 5 < 0 and encloses the zeros 
of the integrand functions on this half-plane from above. Then, in the case when the SYS- 

tern (3.14) has a solution, the relations (3.4) yield an expression for the stress vector in 
the regions of contact, of the form 
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m +ic 

2ns(p)p = s K-l(,) f* (u) p-iul2”du - (3.15) 
--;a+% 

a+iE 

s u;l (2~) Xl (u)( -g-- 
m+ir 

-SZo_tiC 

du$- s v;1(U)X2(-U)(+)-iuiirdU 
-cs’+ic 

s (p) = d’ (r)PG 

To investigate the problem of solvability of (3. 14), we introduce tne space c (T) of vec- 
tor functions f (2) = (f, (z), fs (z)}, z E I’ defined by the metric 

JlflL~ = max,max,/f,(z)zYf,limjf,(z)zYl =O, ~z~-+m, r>o 

Theorem 6. If the free term of the system (3.14) belongs to the space c (y), 0 (. 
y ( 1, then the system has a unique solution in this space. 

To prove this theorem we establish the complete continuity of the operator appearing 
in the left-hand side of (3. 14) in c (y), 0 < y < 1 . The contour of integration I’ 
in the lower half-plane is predeformed in such a way, that its sufficiently distant seg- 
ments lie on the bisectrices of the angles of the third and fourth quadrant of the G-coor- 
dinate plane, and the validity of the conditions of the compactness criterion is then veri- 
fied. 

4, As an example, we examine in more detail the problem of a stamp with a plane 
base, rigidly adhering to an elastic wedge, the lower face of which is also rigidly fixed 

(problem A). 
In accordance with the theory stated above and the relation (1.3) A taken into ac- 

count, it was found convenient to factorize the functions (3.6) with the help of the fol- 

(4.1) 

Here P,, (2; and C&(Z) are polynomials of 2n-th degree, and b* are the constants of 
the approxinlation obtained from the conditions that the left and right-hand sides become 
equal when z = 6, (Factorization of the expression appearing in,the right-hand side 

presents no difficulty, and can be carried out in an exact manner relative to the real axis. 
In addition, the estimates (3. ‘7) hold). 

In the course of constructing the approximate solution, we have limited ourselves, in 

the present case, to n = 0. Numerical analysis shows that in this case the error of the 
approximation (4.1) does not exceed F/o. 

In order to factorize approximately the matrices II (z) and A (z’) , the elements of 
these matrices were previously approximated in accordance with (3.8), using bilinear 
functions and the Bemshtein polynomials [l, 91. The resulting system of second kind 

(3.14) was then reduced to an infinite system by expanding the integrals appearing in 
it, into series in terms of the residues. The asymptotic solution of the system was con- 
structed under the assumption that X = b / a > 1. 

Having found the vector functions x1,$ (z) , we obtain the required contact stresses, 
using the formulas (3.15). The integrals appearing as the result, are converted into the 
formulas of the operational calculus and computed in their closed form [lo]. The prin- 
cipal term of the asymptotic expression for the contact stress vector has the following 
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form (h > 1): 
YP [z,$ (P) i- ia,‘(p)l/ 4G = - K-l(O) f (p)- (4.2) 

(YoI‘-l (T+) (p / U)+- [ 1 - (p in)-@ J-‘+ + 

Y&+ (Z_) (bl P)+“+ 11 - (b / p,-y-f [I + 0 @-‘h-” !25)] 

P = n: / 21bf, t* = ‘/z (1 * in-’ 111 x), a* =: Z* - 1/2, II) > 1) 

where f (2) is the Eulerian integral of second kind, f (f)) is the displacement vector in 
the region of contact and Y, Y, and Y, depend on the constants of the approximation. 

Fig. 1 

For the purpose of numerical analysis it 
was set f (p) = {I, 2), x = 1.6 and h = 3. 

Figure 1 shows the dependence on p i a of 
u~,,“;x (solid lines) and a(Tylo / 3~ (broken 
lines). The curves 1, 2 and 3 correspond to 
the values of the wedge angle a of 3n i 16, 
n i 5 and n i 10. The contact stress curves 
are distributed in the reverse order with in- 
creasing cc . 

Note. The relation (4.2) implies that a 
considerable oscillation of the contact stresses 
is observed in the neighborhood of the zone 
of contact boundaries. The frequency of these 

oscillations increases on approaching the boun- 
daries p =-a and p = 6. A similar pheno- 

menon was noted earlier by the authors of 

[11- 131 and others in the course of inves- 
tigating the contact problems with the coup- 
ling forces taken into account. In fact,the 
above effect is not observed. It arises as the 

result of the breakdown of the linearity of the relations connecting the stresses and de- 
forma~o~ during the ~ne~ation of the sharp edge of the stamp rigidly coupled to the 
medium, Analysis of the relations (4.X) shows that the oscillation appears at very small 
distances from the stamp edges (about 1O-4 of the width of the contact zone) and it is 
therefore not shown on Fig. 1. 

The author thanks V. A. Babe&&o for the attention given and for helpful discussion of 
the results. 
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We investigate the problems of finding the optimal loads acting on a plate,which 
insure the best root-mean-square (RMS) approximation to a given distribution of 

bending and torsional moments, or of the displacements. We study the problems 
of existence and uniqueness of the optimal solution, and establish the necessary 
and sufficient conditions of optimality under the assumption that the manifold 

of admissible leads is a closed convex set in some Hilbert space. 

1. Certain relrtionrhipr of the theory of plater. Auxiliary 
o88umptlonr. We shall consider the inverse problems of plates of variable thickness. 
The equation of flexure of such a plate has the form [l] 

Here u (z, y) denotes the deflection of the median plane of the plate, v is the Pois- 
son’s ratio which is a nonnegative constant, g (IC, y) is the external load intensity, 
D (1c, y) is the torsional rigidity of the plate and 52 is an open bounded region on the 


